Home > Error Bounds > Error Bounds For Approximation In Chebyshev Points

Error Bounds For Approximation In Chebyshev Points

Contents

Technical Information and Publications Division,Betty L. Dover, New York (2000)6.Clenshaw C.W., Curtis A.R.: A method for numerical integration on an automatic computer. The method is based on an interpolatory procedure at Clenshaw–Curtis points and the singular point, and the fast computation of the modified moments with Cauchy type singularity. Upper Saddle River, NJ: Prentice Hall, 1999. 3rd ed. have a peek here

National Bureau of Standards. Theory, 19 (1977), pp. 135–142 12. MorehouseVollansicht - 1978Catalog of National Bureau of Standards Publications, 1966-1976: pt. 1-2 ...United States. Numer.

Error Bounds For Approximation In Chebyshev Points

Sci. IMA J. Department of Commerce, National Bureau of Standards, 1978 0 Rezensionenhttps://books.google.de/books/about/Catalog_of_National_Bureau_of_Standards.html?hl=de&id=UfRzyDVEcnwC Voransicht des Buches » Was andere dazu sagen-Rezension schreibenEs wurden keine Rezensionen gefunden.Ausgewählte SeitenTitelseiteInhaltsverzeichnisIndexInhaltTitles and Abstracts of NBS Publications 1966 Through Soc.

Academic Press, San Diego (2000)14.O’Hara H., Smith F.J.: Error estimation in the Clenshaw-Curtis quadrature formula. Generated Mon, 10 Oct 2016 14:47:11 GMT by s_ac15 (squid/3.5.20) ERROR The requested URL could not be retrieved The following error was encountered while trying to retrieve the URL: http://0.0.0.8/ Connection Here are the instructions how to enable JavaScript in your web browser. R.P Feinerman, D.J Newman Polynomial Approximation Williams & Wilkins, Baltimore (1974) 6.

Technical Information and Publications Division,Betty L. Suppose F is a Lipschitz continuous function on [−1, 1], and L N (F ) is the polynomial obtained by interpolation in N + 1 Clenshaw–Curtis points. of Commerce, National Bureau of Standards, 1978 0 Rezensionenhttps://books.google.de/books/about/Catalog_of_National_Bureau_of_Standards.html?hl=de&id=uPU5AQAAIAAJ Voransicht des Buches » Was andere dazu sagen-Rezension schreibenEs wurden keine Rezensionen gefunden.Ausgewählte SeitenSeite xxviTitelseiteInhaltsverzeichnisInhaltPreface v Titles and Abstracts of NBS Publications http://www.sciencedirect.com/science/article/pii/0021904581900277 Approx.

Generated Mon, 10 Oct 2016 14:47:11 GMT by s_ac15 (squid/3.5.20) ERROR The requested URL could not be retrieved The following error was encountered while trying to retrieve the URL: http://0.0.0.9/ Connection Numer. Math. 223, 399–408 (2009)MATHCrossRefMathSciNet16.Iserles A., Nørsett S.P.: Efficient quadrature of highly-oscillatory integrals using derivatives. National Bureau of Standards.

J.C.C Nitsche Über die Abhängigkeit der Tschebyscheffschen Approximierenden einer differenzierbaren Funktion von Intervall Numer, Math., 4 (1962), pp. 262–276 15. https://books.google.com/books?id=uPU5AQAAIAAJ&pg=PA462&lpg=PA462&dq=error+bounds+for+approximation+in+chebyshev+points&source=bl&ots=wapSsLSWBF&sig=PQXqXScQfXAtGz6lEFg_gupiZ_E&hl=en&sa=X&ved=0ahUKEwjD_8L3uMjPAhXoxYMKHT MorehouseVerlagU.S. Error Bounds For Approximation In Chebyshev Points Burris,Rebecca J. Math. (2010) 116: 463.

J. navigate here Numerical examples support the theoretical analyses. Although carefully collected, accuracy cannot be guaranteed. Numer.

BIT 11, 317–327 (1971)MATHCrossRefMathSciNet23.Powell M.J.D.: Approximation Theory and Methods. Math. 105, 633–658 (2007)MATHCrossRefMathSciNetCopyright information© Springer-Verlag 2010Authors and AffiliationsShuhuang Xiang1Email authorXiaojun Chen2Haiyong Wang11.Department of Applied Mathematics and SoftwareCentral South UniversityChangsha, HunanPeople’s Republic of China2.Department of Applied MathematicsThe Hong Kong Polytechnic UniversityKowloonHong Kong About this article Print Inst. http://megavoid.net/error-bounds/error-bounds.html JavaScript is disabled on your browser.

MorehouseVollansicht - 1978Alle anzeigen »Bibliografische InformationenTitelCatalog of National Bureau of Standards publications, 1966-1976Band 535 von NBS special publicationCatalog of National Bureau of Standards Publications, 1966-1976, Betty L. Full-text · Article · May 2015 Guo HeShuhuang XiangRead full-textLarge-scale Log-determinant Computation through Stochastic Chebyshev Expansions"Intuitively, one can expect that the approximated Chebyshev polynomial converges to its original function as degree Math. 27, 41–52 (1976)CrossRefMathSciNet21.Piessens R., Branders M.: Modified Clenshaw-Curtis method for the computation of Bessel function integrals.

More information Accept Over 10 million scientific documents at your fingertips Switch Edition Academic Edition Corporate Edition Home Impressum Legal Information Contact Us © 2016 Springer International Publishing.

Based on this result, a new method is presented for the computation of the oscillatory integrals with logarithmic singularities too. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. ElsevierAbout ScienceDirectRemote accessShopping cartContact and supportTerms and conditionsPrivacy policyCookies are used by this site. Based on our general scheme, we provide algorithms with provable guarantees for important matrix computations, including log-determinant, trace of matrix inverse, Estrada index, Schatten p-norm, and testing positive definiteness.

National Bureau of StandardsAutorenUnited States. The convergence rate in terms of N of one approximation to F by L N (F ) has been researched in [27], which is listed as follows: "[Show abstract] [Hide abstract] Numer. http://megavoid.net/error-bounds/error-bounds-statistics.html Numer.